On commutativity of prime near-rings with multiplicative generalized derivation
نویسندگان
چکیده
منابع مشابه
On Prime Near-Rings with Generalized Derivation
LetN be a zero-symmetric left near-ring, not necessarily with amultiplicative identity element; and letZ be its multiplicative center. DefineN to be 3-prime if for all a, b ∈ N\{0}, aNb / {0}; and callN 2-torsion-free if N, has no elements of order 2. A derivation onN is an additive endomorphism D of N such that D xy xD y D x y for all x, y ∈ N. A generalized derivation f with associated deriva...
متن کاملSome commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation
Let $R$ be a $*$-prime ring with center $Z(R)$, $d$ a non-zero $(sigma,tau)$-derivation of $R$ with associated automorphisms $sigma$ and $tau$ of $R$, such that $sigma$, $tau$ and $d$ commute with $'*'$. Suppose that $U$ is an ideal of $R$ such that $U^*=U$, and $C_{sigma,tau}={cin R~|~csigma(x)=tau(x)c~mbox{for~all}~xin R}.$ In the present paper, it is shown that if charac...
متن کاملOn Generalized Derivations and Commutativity of Prime Rings with Involution
Let R be a ring with involution ′∗′. A map δ of the ring R into itself is called a derivation if δ(xy) = δ(x)y + xδ(y) for all x, y ∈ R. An additive map F : R → R is called a generalized derivation on R if F(xy) = F(x)y + xδ(y) for all x, y ∈ R, Permanent address: Department of Mathematics, Faculty of Science, Aligarh Muslim University, Aligarh202002, India 292 Shakir Ali and Husain Alhazmi whe...
متن کاملsome commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation
let $r$ be a $*$-prime ring with center $z(r)$, $d$ a non-zero $(sigma,tau)$-derivation of $r$ with associated automorphisms $sigma$ and $tau$ of $r$, such that $sigma$, $tau$ and $d$ commute with $'*'$. suppose that $u$ is an ideal of $r$ such that $u^*=u$, and $c_{sigma,tau}={cin r~|~csigma(x)=tau(x)c~mbox{for~all}~xin r}.$ in the present paper, it is shown that...
متن کاملCommutativity of Prime Γ-near Rings with Γ− (σ, Τ)-derivation
Let N be a prime Γ-near ring with multiplicative center Z. Let σ and τ be automorphisms of N and δ be a Γ− (σ, τ)-derivation of N such that N is 2-torsion free. In this paper the following results are proved: (1) If σγδ = δγσ and τγδ = δγτ and δ(N) ⊆ Z, or [δ(x), δ(y)]γ = 0, for all x, y ∈ N and γ ∈ Γ, then N is a commutative ring. (2) If δ1 is a Γ-derivation, δ2 is a Γ − (σ, τ) derivation of N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
سال: 2018
ISSN: 1303-5991
DOI: 10.31801/cfsuasmas.443732